Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 147: 107358, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38626490

RESUMEN

VEGFR-2 is an attractive target for the development of anti-tumor drugs and plays a crucial role in tumor angiogenesis. This study reports a series of novel thiophene-3-carboxamide derivatives based on PAN-90806 as VEGFR-2 inhibitors, among which compound 14d exhibits excellent anti-proliferative activity against HCT116, MCF7, PC3, and A549 cell lines, and has effective VEGFR-2 inhibitory activity with an IC50 value of 191.1 nM. Additionally, CETSA results indicated that VEGFR-2 was a relevant target of compound 14d in the cell lines, and compound 14d could also inhibit VEGFR-2 protein phosphorylation in A549 cell line. Furthermore, compound 14d inhibited colony formation, cell migration, and HUVECs tube formation in a dose-dependent manner. The mechanism by which 14d induced cancer cell death involves blocking the cell cycle, increasing ROS production, inducing apoptosis, and dose-dependently reducing the levels of phosphorylated ERK and MEK. Molecular docking and molecular dynamics simulations had shown that compound 14d could stably bind to the active site of VEGFR-2. These results confirmed that compound 14d might be a promising lead compound for anti-angiogenesis.

3.
Bioorg Chem ; 141: 106848, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37716273

RESUMEN

Osteosarcoma is a common primary malignant bone tumor in adolescents. Wnt/ß-catenin has been proved to play a pro-oncogenic role and was overactivated in osteosarcoma. Therefore, this pathway has become an interesting therapeutic target for osteosarcoma. Herein we report the design, synthesis and biological activities of a series of novel pyrido[2,3-d]pyrimidine derivatives based on our previous work. Among these, the representative compound 2-{[1,3-dimethyl-7-(4-methylpiperazin-1-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidin-5-yl]amino}-N-[4-(trifluoromethoxy)phenyl]acetamide (7m) has exhibited good antiproliferative activity towards 143B and MG63 cells with good selectivity over non-cancerous HSF cells. In the assay of Ca2+ concentration, the compound 7m increased the intracellular Ca2+ concentration in 143B cells. In addition, the expression of DKK1 increased, and that of p-ß-catenin decreased by 7m treatment. Finally, the Hoechst 33,342 staining, Annexin-FITC/PI staining and mitochondrial fluorescence staining have clearly demonstrated that compound 7m induced apoptosis in 143B cells.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Adolescente , beta Catenina/metabolismo , Línea Celular Tumoral , Vía de Señalización Wnt , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo , Osteosarcoma/patología , Apoptosis , Proliferación Celular , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Péptidos y Proteínas de Señalización Intercelular
4.
Molecules ; 28(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37513270

RESUMEN

The activation of innate antiviral immunity is a promising approach for combatting viral infections. In this study, we screened Chinese herbs that activated human immunity and identified coptisine as a potent inhibitor of the influenza virus with an EC50 of 10.7 µM in MDCK cells. The time of an addition assay revealed that pre-treatment with coptisine was more effective at reducing viral replication than co-treatment or post-treatment. Our bulk RNA-sequencing data showed that coptisine upregulated the p21 signaling pathway in MDCK cells, which was responsible for its antiviral effects. Specifically, coptisine increased the expression of p21 and FOXO1 in a dose-dependent manner while leaving the MELK expression unchanged. Docking analysis revealed that coptisine likely inhibited MELK activity directly by forming hydrogen bonds with ASP-150 and GLU-87 in the catalytic pocket. These findings suggest that coptisine may be a promising antiviral agent that regulates the p21 signaling pathway to inhibit viral replication.


Asunto(s)
Berberina , Gripe Humana , Humanos , Gripe Humana/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Berberina/farmacología , Replicación Viral , Proteínas Serina-Treonina Quinasas
5.
Phytomedicine ; 118: 154939, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37354697

RESUMEN

BACKGROUND AND PURPOSE: Fatty acid binding protein 4 (FABP4) has been identified as a contributor to cartilage degradation in osteoarthritis (OA) patients, and inhibiting FABP4 using small molecules has emerged as a promising approach for developing OA drugs. Our previous research showed that Andrographis paniculata, a medicinal plant, strongly inhibits FABP4 activity. This led us to hypothesize that Andrographis paniculata ingredients might have protective effects on OA cartilage through FABP4 inhibition. METHODS: We analyzed scRNA-seq data from joint tissue of OA patients (GSE152805; GSE145286) using Scanpy 1.9.1 and Single Cell Portal. We conducted docking analysis of FABP4 inhibitors using Autodock Vina v.1.0.2. We evaluated the anti-FABP4 activity using a fluorescence displacement assay and measured the fatty acid oxidation (FAO) activity using the FAOBlue assay. We used H2DCF-DA to measure reactive oxygen species (ROS) levels. We studied signaling pathways using bulk RNA sequencing and western blot analysis in human C28/I2 chondrocytes. We evaluated anti-OA activity in monosodium iodoacetate (MIA)-induced rats. RESULTS: We identified Andrographolide (AP) as a novel FABP4 inhibitor. Bulk RNA-sequencing analysis revealed that FABP4 upregulated FAO and ROS in chondrocytes, which was inhibited by AP. ROS generation activated the NF-κB pathway, leading to overexpression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4), which is a responsible factor for cartilage degradation in OA patients. AP inhibited FABP4, thereby reducing the overexpression of ADAMTS4 by inhibiting the NF-κB pathway. In MIA rats, AP treatment reduced the overexpression of ADAMTS4, repaired cartilage and subchondral bone, and promoted cartilage regeneration. CONCLUSION: Our results indicate that the inhibition of FABP4 activity by AP explains the anti-OA properties of Andrographis paniculata by protecting against cartilage degradation in OA patients. Additionally, our findings suggest that AP may be a promising therapeutic agent for OA treatment due to its ability to alleviate cartilage damage and bone erosion.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Ratas , Animales , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Osteoartritis/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/farmacología
7.
Phytomedicine ; 108: 154506, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36403512

RESUMEN

BACKGROUND AND PURPOSE: C-X-C chemokine receptor type 4 (CXCR4) inhibition protects cartilage in osteoarthritis (OA) animal models. Therefore, CXCR4 has becoming a novel target for OA drug development. Since dietary and herbal supplements have been widely used for joint health, we hypothesized that some supplements exhibit protective effects on OA cartilage through inhibiting CXCR4 signaling. METHODS: The single-cell RNA sequencing data of OA patients (GSE152805) was re-analyzed by Scanpy 1.9.0. The docking screening of CXCR4 antagonists was conducted by Autodock Vina 1.2.0. The CXCR4 antagonistic activity was evaluated by calcium response in THP-1 cells. Signaling pathway study was conducted by bulk RNA sequencing and western blot analysis in human C28/I2 chondrocytes. The anti-OA activity was evaluated in monosodium iodoacetate (MIA)-induced rats. RESULTS: Astragaloside IV (ASN IV), the predominate phytochemical in Astragalus membranaceus, has been identified as a novel CXCR4 antagonist. ASN IV reduced CXCL12-induced ADAMTS4,5 overexpression in chondrocytes through blocking Akt signaling pathway. Furthermore, ASN IV administration significantly repaired the damaged cartilage and subchondral bone in MIA-induced rats. CONCLUSION: The blockade of CXCR4 signaling by ASN IV could explain anti-OA activities of Astragalus membranaceus by protection of cartilage degradation in OA patients. Since ASN IV as an antiviral has been approved by China National Medical Products Administration for testing in people, repurposing of ASN IV as a joint protective agent might be a promising strategy for OA drug development.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Ratas , Animales , Ácido Yodoacético/toxicidad , Ácido Yodoacético/metabolismo , Osteoartritis/inducido químicamente , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Transducción de Señal , Astragalus propinquus , Receptores CXCR4/metabolismo
8.
Life (Basel) ; 12(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36362861

RESUMEN

Coronavirus Disease 2019 (COVID-19) is a highly infectious and pathogenic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early in this epidemic, the herbal formulas used in traditional Chinese medicine (TCM) were widely used for the treatment of COVID-19 in China. According to Venn diagram analysis, we found that Glycyrrhizae Radix et Rhizoma is a frequent herb in TCM formulas against COVID-19. The extract of Glycyrrhizae Radix et Rhizoma exhibits an anti-SARS-CoV-2 replication activity in vitro, but its pharmacological mechanism remains unclear. We here demonstrate that glycyrrhizin, the main active ingredient of Glycyrrhizae Radix et Rhizoma, prevents the coronavirus from entering cells by targeting angiotensin-converting enzyme 2 (ACE2). Glycyrrhizin inhibited the binding of the spike protein of the SARS-CoV-2 to ACE2 in our Western blot-based assay. The following bulk RNA-seq analysis showed that glycyrrhizin down-regulated ACE2 expression in vitro which was further confirmed by Western blot and quantitative PCR. Together, we believe that glycyrrhizin inhibits SARS-CoV-2 entry into cells by targeting ACE2.

9.
Eur J Med Chem ; 240: 114579, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35797896

RESUMEN

The constitutive activation of ERK1/2 (RAF-MEK-ERK) signaling pathway has been widely observed in many types of tumors, and the blockade of ERK1/2 signaling pathway has been proved to reduce tumor growth. Therefore, ERK1/2 signaling pathway has become an interesting therapeutic target for cancer therapy. Despite the successful development of BRAF and MEK inhibitors in clinic treatment, resistance often appears to re-enhance ERK1/2 signaling. Here we report the design, synthesis, biological activity of a series of novel pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione derivatives based on compound 1. Among them, the target compound N-(3-chlorophenyl)-2-((1,3-dimethyl-7-(4-methylpiperazin-1-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidin-5-yl)amino)acetamide (14m) exhibited excellent antiproliferative activity towards MCF-7, A375, SK-MEL-2 and SK-HEP-1 cells, with low cytotoxicity in C28/I2 cells. Tumor spheroid assay demonstrated the superior potency of 14m in inhibiting the growth of SK-HEP-1 spheroidal models. The mechanism of 14m to induce cancer cell death was shown to suppress cell migrations, induce cell apoptosis, decrease the levels of phosphorylated ERK and MEK in a dose-dependent manner and increase ROS production.


Asunto(s)
Antineoplásicos , Sistema de Señalización de MAP Quinasas , Línea Celular Tumoral , Quinasas de Proteína Quinasa Activadas por Mitógenos , Pirimidinas/farmacología , Transducción de Señal , Relación Estructura-Actividad
10.
PLoS One ; 16(1): e0245464, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33481843

RESUMEN

Social media fatigue (SMF), which refers to social media users' tendency to withdraw from social media because of feeling overwhelmed, is closely related to individuals' social life and well-being. Many studies focused on understanding SMF and exploring its enablers and influences. However, few pieces of research administered a standard measurement of SMF. This study aimed to develop and validate a measure of SMF, and a cross-sectional survey was conducted among 1599 participants in total. Semi-structured interviews of 30 participants were firstly conducted as a pilot study, and an initial version of the social media fatigue scale (SMFS) with 24 items was generated. Then, both exploratory factor analysis (N = 509) and confirmatory factor analysis (N = 552) as well as reliability and validity analysis (N = 508) were conducted and a 15-item SMFS was finally developed. The results demonstrated that: 1) SMF was a multi-dimension concept including a cognitive aspect, an emotional aspect and a behavioral aspect; 2) the three-dimensional structure of the SMFS (cognitive-behavioral-emotional structure) fitted the data well; 3) the McDonald's Omega coefficients for the SMFS was 0.83, suggesting that the SMFS was reliable; 4) criterion validity was satisfactory as indicated by both the significant correlations between self-rated scores of fatigue and total SMFS scores and the significant regression model of SMF on social media privacy, social media confidence, and negative feeling after comparison. Based on the Limited Capacity Model, the present study expanded SMF from a unidimensional model to a three-dimension model, and developed a 15-item SMFS. The study enriched the existing knowledge of SMF, and coined a reliable and valid tool for measuring it. Besides, concluding the typical characteristics of SMF, the study may provide some inspiration for both researchers and social media managers and operators in mitigating SMF.


Asunto(s)
Conducta , Cognición , Emociones , Psicometría , Medios de Comunicación Sociales , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven
11.
Comput Biol Med ; 43(10): 1622-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24034754

RESUMEN

Extracting clean fetal electrocardiogram (ECG) signals is very important in fetal monitoring. In this paper, we proposed a new method for fetal ECG extraction based on wavelet analysis, the least mean square (LMS) adaptive filtering algorithm, and the spatially selective noise filtration (SSNF) algorithm. First, abdominal signals and thoracic signals were processed by stationary wavelet transform (SWT), and the wavelet coefficients at each scale were obtained. For each scale, the detail coefficients were processed by the LMS algorithm. The coefficient of the abdominal signal was taken as the original input of the LMS adaptive filtering system, and the coefficient of the thoracic signal as the reference input. Then, correlations of the processed wavelet coefficients were computed. The threshold was set and noise components were removed with the SSNF algorithm. Finally, the processed wavelet coefficients were reconstructed by inverse SWT to obtain fetal ECG. Twenty cases of simulated data and 12 cases of clinical data were used. Experimental results showed that the proposed method outperforms the LMS algorithm: (1) it shows improvement in case of superposition R-peaks of fetal ECG and maternal ECG; (2) noise disturbance is eliminated by incorporating the SSNF algorithm and the extracted waveform is more stable; and (3) the performance is proven quantitatively by SNR calculation. The results indicated that the proposed algorithm can be used for extracting fetal ECG from abdominal signals.


Asunto(s)
Algoritmos , Electrocardiografía/métodos , Monitoreo Fetal/métodos , Modelos Cardiovasculares , Análisis de Ondículas , Simulación por Computador , Femenino , Feto/fisiología , Humanos , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA